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 Introduction / Motivation 
Accurate thermodynamic models for fusion energy fuels are 
needed as the completion date for major test facilities 
approaches. The recent development of models or Equations 
of State (EOS) for Hydrogen (H2) and Deuterium (D2) 
provided strong incentive to continue the process with other 
important isotopologues. My task was to collect data and 
assist in the subsequent fitting of the EOS for two of these – 
Tritium (T2) and Hydrogen-Deuteride (HD).  

A substantial lack of experimental measurements for T2 and 
HD have hindered past EOS development efforts. This led us 
to investigate empirical methods for obtaining this essential 
information. My research utilized two methods for prediction, 
the Quantum Law of Corresponding States (QLCS), and the 
Geometric Mean Method (GM). Properties that we needed to 
predict included vapor pressures, densities, and sound 
velocities around the saturated liquid region and the single 
phase liquid region. By combining the predicted values with 
existing data, we endeavored to then produce a reference 
quality EOS.  
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QLCS - Predicted T2 Vapor Pressures vs. 
Experimental Data 

Conclusions 
The GM was shown to produce accurate results between the 
triple and critical points. However, due to an absence of 
experimental measurements for HT properties, we were unable 
use this method for tritium. The QLCS correctly predicted 
property values at the triple and critical point. Further 
investigation is necessary to determine why the intermediate 
values do not follow the presumed linear trend, and how to 
resolve the issue. The EOS will continue to be fitted until it 
demonstrates correct thermodynamic tendencies with minimal 
deviations. Ultimately, this work will be published as 
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Despite our best hopes, the QLCS was unable to reliably predict 
known vapor pressures within the margin of error for those 
values. We did use the predicted densities and sound velocities 
in the fit since we had little or no other data available. 
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Figure 2: The blue and red points represent D2 and H2 vapor 
pressures that were respectively transformed to T2 and 
compared against experimental data. Deviations were computed 
by (Pcalc – Pexp) / Pexp 

Figure 3: Reduced vapor pressure values of Neon, D2, H2, and 
He demonstrating linearity.  
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Figure 1: The molecular configurations demonstrating how 
hydrogen isotopes combine.  

Figure 6: Deviation plot of the vapor pressures showing the 
ability of the GM to accurately reproduce experimental values.  

Figure 4: Comparing the EOS that is currently being fitted  for 
tritium to existing and predicted data. 
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Figure 5: ITER, the fusion reactor currently under construction where D2 
and T2 may be used as fuels. 
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Scaling Method 1: Quantum Law  
of Corresponding States 

 Introduces a Quantum parameter Ʌ* defined as:  
 

new fundamental equations of state 
for tritium and hydrogen-deuteride so 
we can get the ball rolling toward a 
new future with fusion energy. 

Scaling Method 2: 
Geometric Mean Method 

 

The GM is based on a simple relationship, shown below: 
 

 
𝐻𝐻 = 𝐻2𝐻2  
𝐻𝐻 = 𝐻2𝐻2  

 If we have experimental data, we can manipulated the ‘X’ term 
to minimize the deviations. For example, if we know a vapor 
pressure, density, or sound velocity for H2 and D2 at the same 
temperature, evaluation in the above equations will result in 
the respective value for HD. This method was not as applicable 
for T2 due to nonexistent experimental measurements for HT. I 
was able to predict HD densities with a maximum deviation of 
O.3%. 

Λ∗ =
𝑁𝐴ℎ
𝜎 𝑀𝑀

 

Ʌ* is unique for every element, and is the reduced de Broglie 
wavelength for a molecule. The quantum behavior of an 
element increases with Ʌ* . The Hydrogen’s fall at the upper 
end of the scale along with the highest, 3He. The QLCS 
incorporates Lennard-Jones intermolecular potentials in the 
reducing functions for the thermodynamic properties. Ʌ* 
plotted against reduced values yields a linear trend. The 
unknown value is determined by linear interpolation, a process 
also known as transformation. The QLCS has been successfully 
used in the past by a number of scientists to predict property 
values for H2 and Helium-3, among others.1, 2 
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Reduced pressure vs. Ʌ* 

The Equations of State 
Modern EOS are explicitly defined in terms of the Helmholtz 
free energy. This is a thermodynamic potential, and can be 
likened unto more familiar potentials such as internal energy, 
enthalpy, or Gibbs free energy. The general form of the 
Helmholtz equation is shown below, where the α0 coefficient 
corresponds to the ideal gas contribution. The αr coefficient 
corresponds to the real fluid part of the equation, is also called 
the residual. τ and δ are reciprocals of the reduced 
temperature and density : 
 
  
From the reduced Helmholtz energy, there exists a set of 
equations that allows one to calculate other thermodynamic 
properties such as enthalpies, and heat capacities by taking 
derivatives of this reduced Helmholtz energy. I have shown 
the formula for determining heat capacities below. 
 
 
To use the equation to find a particular value, at least two 
thermodynamically independent pieces of information are 
required, and with these one can find any third value.  
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